10.3 Polar Coordinates

Goal: Develop a 2D coordinate system that is good for describing motion/curves that are traveling in a circular/arcing path.

Cartesian Coord.	Polar Coord.
Given (x, y) 1. Stand at origin.	Given (r, θ) 1. Stand at origin facing the positive x-axis.
2. Move x-units on x-axis. (positive $=$ right)	2. Rotate by angle θ. (positive $=c \mathrm{c} w$
3. Move y-units parallel to y-axis. (positive $=$ up)	3. Walk r-units in direction you are facing. (neg. $=$ backward)

Example: Plot these points

1. $(r, \theta)=(1, \pi / 2)$
2. $(r, \theta)=(3,5 \pi / 4)$
3. $(r, \theta)=(0, \pi / 3)$
4. $(r, \theta)=(-1,3 \pi / 2)$
5. $(r, \theta)=(4,0)$
6. $(r, \theta)=(4,100 \pi)$

From trig you already know how to convert:

$$
\begin{array}{ll}
x=r \cos (\theta), & y=r \sin (\theta) \\
\tan (\theta)=\frac{y}{x}, & x^{2}+y^{2}=r^{2}
\end{array}
$$

Plotting Polar Curves

1. Can try to convert to x and y. Then hope you recognize the curve.
2. Plot points!

Start with $0, \pi / 2, \pi, 3 \pi / 2$.
For more detail do multiples of $\pi / 6$ and $\pi / 4$.

$\boldsymbol{\theta}$	\boldsymbol{r}
0	
$\pi / 6$	
$\pi / 4$	
$\pi / 3$	
$\pi / 2$	
$2 \pi / 3$	
$3 \pi / 4$	
$5 \pi / 6$	
π	

Basic Examples:
(a) Graph $r=3$.
(b) Graph $\theta=\pi / 4$.
(c) Graph $r=\sin (\theta)$
(d) Graph $r=\cos (2 \theta)$

Polar Graph Paper:

An old exam question:
The four polar equations below each match up with one of the six pictures. Identify which match.

1. $r=\sqrt{\theta}$
2. $r=1-2 \cos (\theta)$
3. $r=1+\sin (2 \theta)$
4. $r=9 \cos (\theta)$

Slopes of tangents for a polar curve

Given a polar curve $r=f(\theta)$.
To find
$\frac{d y}{d x}=$ the slope of the tangent line
here is what we do

1. Note that

$$
\begin{aligned}
& x=r \cos (\theta)=f(\theta) \cos (\theta) \\
& y=r \sin (\theta)=f(\theta) \sin (\theta)
\end{aligned}
$$

2. Use $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)}{f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)}$

Since $f^{\prime}(\theta)=\frac{d r}{d \theta}$, this final answer is often
written as

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)}
$$

