10.3 Polar Coordinates

Goal: Develop a 2D coordinate system that is good for describing motion/curves that are traveling in a circular/arcing path.

Cartesian Coord.	Polar Coord.
Given (x, y)	Given (r, θ)
1. Stand at origin.	1. Stand at origin
	facing the positive
	<i>x</i> -axis.
2. Move x-units	2. Rotate by angle θ .
on x-axis.	(positive = ccw)
(positive = right)	
3. Move y-units	3. Walk <i>r</i> -units in
parallel to y-axis.	direction you are
(positive = up)	facing.
	(neg. = backward)

Example: Plot these points

1. $(r, \theta) = (1, \pi/2)$ 2. $(r, \theta) = (3, 5\pi/4)$ 3. $(r, \theta) = (0, \pi/3)$ 4. $(r, \theta) = (-1, 3\pi/2)$ 5. $(r, \theta) = (4, 0)$ 6. $(r, \theta) = (4, 100 \pi)$ From trig you already know how to convert:

$$x = r \cos(\theta),$$
 $y = r \sin(\theta)$
 $\tan(\theta) = \frac{y}{x},$ $x^2 + y^2 = r^2$

Plotting Polar Curves

- Can try to convert to x and y. Then hope you recognize the curve.
- Plot points! Start with 0, π/2, π, 3π/2. For more detail do multiples of π/6 and π/4.

Basic Examples:

- (a) Graph r = 3.
- (b) Graph $\theta = \pi/4$.
- (c) Graph $r = sin(\theta)$
- (d) Graph $r = cos(2\theta)$

θ	r
0	
π/6	
π/4	
π/3	
π/2	
2π/3	
3π/4	
5π/6	
π	

Polar Graph Paper:

An old exam question:

The four polar equations below each match up with one of the six pictures. Identify which match.

Slopes of tangents for a polar curve

Given a polar curve $r = f(\theta)$. To find $\frac{dy}{dx}$ = the slope of the tangent line here is what we do 1. Note that

1. Note that $x = r\cos(\theta) = f(\theta)\cos(\theta)$ $y = r\sin(\theta) = f(\theta)\sin(\theta)$ 2. Use $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f'(\theta)\sin(\theta) + f(\theta)\cos(\theta)}{f'(\theta)\cos(\theta) - f(\theta)\sin(\theta)}$ Since $f'(\theta) = \frac{dr}{d\theta}$, this final answer is often written as

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin(\theta) + r\cos(\theta)}{\frac{dr}{d\theta}\cos(\theta) - r\sin(\theta)}$$